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Lecture 28

Two-Port Amplifier Models
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Relative Magnitude of Small Signal BJT  Parameters
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Often the go term can be neglected in the small signal model because it is so small

for vertical npn

Review  from Previous Lecture
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Relative Magnitude of Small Signal BJT Parameters
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• Often the go term can be neglected in the small signal model because it is so small

• Be careful about neglecting go prior to obtaining a final expression 

for vertical npn

Review  from Previous Lecture
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How does gm vary with IDQ?  
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Varies with the square root of IDQ

Varies linearly with  IDQ

Doesn’t vary  with  IDQ

Review  from Previous Lecture
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Large and Small Signal Parameter Domains 
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Large Signal Parameter Domain:   Quiescent Port and Model Variables

Small Signal Parameter Domain:   Small-Signal Port and Model Variables

(No small-signal model parameters or small-

signal port variables)

(No dc model parameters or dc port variables)

Review  from Previous Lecture
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Gains for MOSFET and BJT Circuits
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• Gains vary linearly with small signal parameter gm

For both circuits

• Power is often a key resource in the design of an integrated circuit

• In both circuits, power is proportional to ICQ , IDQ  (if VSS and VEE are fixed)

Large Signal Parameter Domain

(If go is neglected)

Small Signal Parameter Domain

(neglecting g0)

• Gains are identical in small-signal parameter domain !

Review  from Previous Lecture
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Amplifier Biasing (precursor) 

B
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C

VCC

Vin

R1

Vout

VEE

Q1

Not convenient to have multiple dc power supplies

VOUTQ very sensitive to VEE

B

E

C

VCC=12V

Vin

R1=2K

Vout

Q1

RB=500K

C1=1uF

Single power supply

Additional resistor and capacitor

Biasing Circuits shown in purple

Review  from Previous Lecture
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• Small-Signal Analysis

• Graphical Interpretation

• MOSFET Model Extensions

• Biasing (a precursor)

Two-Port Amplifier Modeling
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Amplifier Characterization (an example)

Determine VOUTQ, AV, RIN

B

E

C

VCC=12V

Vin

R1=2K

Vout

Q1

RB=500K

C1=1uF

Determine VOUT and VOUT(t) if VIN=.002sin(400t)

In the following slides we will analyze this circuit

Assume β=100 

This example serves as a precursor to amplifier characterization
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Amplifier Characterization (an example)

R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Several different biasing circuits can be used 

Biasing 

Circuit

(biasing components:  C, RB, VCC in this case, all disappear in small-signal voltage gain circuit)

( iI general, all dc voltage sources, dc current sources, and large capacitors will disappear in small-signal analysis)
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R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Biasing 

Circuit

Amplifier Characterization (an example)

Determine VOUTQ, AV, RIN
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R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Determine VOUTQ

β=100

R2=2K

Q1

VOUT

VCC=12V

RB1=500K

IB simplified

R2=2K VOUTQ

VCC=12V

RB1=500K

IB

0.6V

βIB

dc equivalent circuit

dc equivalent circuit

CQ BQ

12V-0.6V
I  = βI  =100 2.3mA

500K

 
= 

 

OUTQ CQ 1V  = 12V-I R  =12V - 2.3mA 2K 7.4V• =

Amplifier Characterization (an example)
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R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Determine the SS voltage gain  (AV) 

β=100

R1

VIN

VOUT

RB

ss equivalent circuit

Have seen this circuit before but will repeat for review purposes

R1

VOUT

VIN RB gmVBEVBE

iB

gπ

ss equivalent circuit

m  BE 1g ROUT= −V V

 BEIN=V V

V 1 mA R g= −

CQ 1
V

t

I R
A -

V


This basic amplifier structure is widely used and 

repeated analysis serves no useful purpose

177V

2.3mA 2K
A -

26mV

•
  −

Amplifier Characterization (an example)
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R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

β=100

Amplifier Characterization (an example)

VIN

Linear One-Port 

Facing Input

RIN

• Here RIN is defined to be the impedance facing VIN

• Here any load is assumed to be absorbed into the 

one-port

• Later will consider how load is connected in 

defining RIN

Determine VOUTQ, AV, RIN
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R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF

Determine  RIN

β=100
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Amplifier Characterization (an example)
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Determine VOUT and VOUT(t) if VIN=.002sin(400t)

B

E

C

VCC=12V

Vin

R1=2K

Vout

Q1

RB=500K

C1=1uF

( )OUT OUTQ V  INV t  V +A V

7.4 .35 sin(400 )OUTV  - 0 •V t

OUT V  IN A=V V

177 .002sin(400 ) 0.354sin(400 )OUT  t t= − • = −V
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Amplifier Characterization (an example)

This example identified several useful characteristics of amplifiers

but a more formal method of characterization is needed!



One-Port, Two-Port and Three-Port Networks
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• Each port characterized by a pair of nodes (terminals)

• Can consider any number of ports

• Can be linear or nonlinear but most interest here will be in linear n-ports

• Often one node is common for all ports

• Ports are externally excited, terminated, or interconnected to form useful circuits

• Often useful for decomposing portions of a larger circuit into subcircuits to provide 

additional insight into operation of 63  Slides20
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Amplifier Characterization

• Two-Port Models

• Amplifier Parameters

Will assume amplifiers have two ports, one termed an input 

port and the  other termed an output port
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Two-Port Representation of Amplifiers

R1=2K

Q1

VOUT

VCC=12V

VIN(t)

RB=500K

C=1uF
RL

R1

VIN

VOUT

RB

RL

R1

VOUT

VIN RB gmVBEVBE

iB

gπ RL

Two-Port Network

• Two-port model representation of amplifiers useful for insight into operation and analysis 

• Internal circuit structure of the two-port can be quite complicated but equivalent two-port 

model (when circuit is linear) is quite simple

Have excluded RL from two-port here
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Two-port representation of amplifiers

y11 y22 V2

y21V1

y12V2
V1

Amplifiers can be modeled as a linear two-port for small-signal operation

• Amplifier often unilateral (signal propagates in only one direction: wlog y12=0)

• One terminal is often common

y11
y22 V2

y21V1

V1

In terms of y-parameters

Other parameter sets could be used
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Two-port representation of amplifiers

RIN
V2

AVV1

V1

ROUT

• Thevenin equivalent output port often more standard

• RIN, AV, and ROUT often used to characterize the two-port of amplifiers

y11 y22 V2

y21V1

V1

Unilateral amplifier in terms of “amplifier” parameters

11

1
INR

y
= 21

22

V

y
A

y
= −

22

1
OUTR

y
=

Unilateral amplifiers:
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Amplifier input impedance, output 

impedance and gain are usually of interest

Example 1:   Assume amplifier is  unilateral 

VIN

RS

Amplifier RL

VOUT

RIN V2

AVV1

V1

ROUT

VIN

RS

RL

VOUT

   
   
   

L IN
OUT V IN

L OUT S IN

R R
V = A V

R +R R +R

  
  
  

OUT L IN
VAMP V

IN L OUT S IN

V R R
A = = A

V R +R R +R

• Can get gain without reconsidering details about components internal to the Amplifier !!!

Why?

• Analysis more involved when not unilateral 
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Amplifier input impedance, output 

impedance and gain are usually of interest

Example 2:   Assume amplifiers are unilateral 

• Can get gain without reconsidering details about components internal to the Amplifier !!!

Why?

VIN

RS

Amplifier 1 Amplifier 2 Amplifier 3 RL

VOUT

RIN1 V21
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       
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RR R R
V = A A A V

R +R R +R R +R R +R

       
       
       

OUT IN3L IN2 IN1
VAMP V3 V2 V1

IN L OUT3 OUT2 IN3 OUT1 IN2 S IN1

V RR R R
A = = A A A

V R +R R +R R +R R +R

• Analysis more involved when not unilateral 



Two-port representation of amplifiers

y11
y22 V2

y21V1

y12V2
V1

• Amplifier often unilateral (signal propagates in only one direction: wlog y12=0)

• One terminal is often common

• “Amplifier” parameters often used

y11
y22 V2

y21V1

V1 V1 V2

I1 I2

RIN

ROUT

AVV1

Two Port (Thevenin)

V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

• Amplifier  parameters can also be used if not unilateral

• One terminal is often common

y parameters Amplifier parameters

y parameters Amplifier parameters
of 63  Slides27



Determination of small-signal model parameters:

In the past, we have determined small-signal model parameters of electronic 

devices from the nonlinear port characteristics

( )

( ) 
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2122

2111

,VVfI
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21i
ij

V

,VVf
y


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


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• Will now determine small-signal model parameters for two-port comprised of 

linear networks (instead of just electronic devices)

• Could go back to the nonlinear models and analyze as we did for electronic 

devices

• Will follow a different approach (results are identical) that is often much easier

y11
y22 V2

y21V1

y12V2
V1 V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)
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V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

y11A y22A

y12AV2A

y21AV1A

V1A V2A

i1A
i2A

y11B y22B

y12BV2B

y21BV1B

V1B V2B

i1B
i2B V2

i2

V1

i1

Two-Port Equivalents of Interconnected Two-ports

• could obtain two-port in any form

• often obtain equivalent circuit w/o identifying independent variables

• Unilateral iff AVR=0  (or if AV=0  though would probably relabel ports)

• Thevenin-Norton transformations can be made on either or both ports

Example:
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V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

y11A y22A

y12AV2A

y21AV1A

V1A V2A

i1A
i2A

R1

RB

V1B V2B

I1B I2B

g22B

g21BV2B g12BV1B

g11B

Two Port (Norton)

i1C

Linear Two Port 

v1C

i2C

v2C

H-parameters

(Hybrid Parameters) 

1 11 1 12 2C C C C Ch h= +V i v

2 21 1 22 2C C C C Ch h= +i i v

RXX

V1

i1

V2

i2

Two-Port Equivalents of Interconnected Two-ports

Example:
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V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

Two-Port Equivalents of Interconnected Two-ports

1 1 2

2 1 2

0 0

1

1

VR

V0

A

R R

A

R R

in in

   −
=    

   

   −
= +   

   

i V + V

i V V

1 1 2

2 2 0 1

VR

V0

R A

R A

+

+

in=

=

V i V

V i V

Or equivalently in form where port voltages are the independent variables

Slide 31
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Determination of two-port  small-signal model parameters

A method of obtaining Rin

Ro

V1

itest

v0 1A  V V2

Rin

i2

Vtest

i1

vR 2A  V

 test
in

 test

R =
V

i

Terminate the output in a (small signal) short-circuit

1 1 2

2 1 2

0 0

1

1

VR

V0

A

R R

A

R R

in in

   −
=    

   

   −
= +   

   

i V + V

i V V

2 0=V

(One method will be discussed here)

y11A y22A

y12AV2A

y21AV1A

V1A V2A

i1A
i2A

R1

RB

V1B V2B

I1B I2B

g22B

g21BV2B g12BV1B

g11B

Two Port (Norton)

i1C

Linear Two Port 

v1C

i2C

v2C

H-parameters

(Hybrid Parameters) 

1 11 1 12 2C C C C Ch h= +V i v

2 21 1 22 2C C C C Ch h= +i i v

RXX

1

1

test

test

=

=

V V
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Determination of two-port small-signal model parameters

A method of obtaining AV0

Terminate the output in a (small signal)  open-circuit

 out-test
V0

 test

A =
V

V

1 1 2

2 1 2

0 0

1

1

VR

V0

A

R R

A

R R

in in

   −
= +   

   

   −
= +   

   

i V V

i V V

2 0=i

Ro

V1

v0 1A  V V2

Rin

i2

Vtest

i1

vR 2A  V Vout-test

y11A y22A

y12AV2A

y21AV1A

V1A V2A

i1A
i2A

R1

RB

V1B V2B

I1B I2B

g22B

g21BV2B g12BV1B

g11B

Two Port (Norton)

i1C

Linear Two Port 

v1C

i2C

v2C

H-parameters

(Hybrid Parameters) 

1 11 1 12 2C C C C Ch h= +V i v

2 21 1 22 2C C C C Ch h= +i i v

RXX

1

2

test

out-test

=

=

V V

V V
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Determination of two-port small-signal model parameters

A method of obtaining R0

Terminate the input in a (small-signal) short-circuit

 test
0

 test

R =
V

i

1 1 2

2 1 2

0 0

1

1

VR

V0

A

R R

A

R R

in in

   −
= +   

   

   −
= +   

   

i V V

i V V

1 0=V

Ro

V1

v0 1A  V V2

Rin

i2i1

vR 2A  V
Vtest

itest

y11A y22A

y12AV2A

y21AV1A

V1A V2A

i1A
i2A

R1

RB

V1B V2B

I1B I2B

g22B

g21BV2B g12BV1B

g11B

Two Port (Norton)

i1C

Linear Two Port 

v1C

i2C

v2C

H-parameters

(Hybrid Parameters) 

1 11 1 12 2C C C C Ch h= +V i v

2 21 1 22 2C C C C Ch h= +i i v

RXX
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Determination of two-port small-signal model parameters

A method of obtaining AVR

Ro

V1

i1

v0 1A  V
V2

Rin

i2

vR 2A  V
VtestVout-test

Terminate the input in a (small-signal) open-circuit

 out-test
VR

 test

A =
V

V

1 1 2

2 1 2

0 0

1

1

VR

V0

A

R R

A

R R

in in

   
= −   

   

   −
= +   

   

i V V

i V V

1 0=i

y11A y22A

y12AV2A

y21AV1A

V1A V2A

i1A
i2A

R1

RB

V1B V2B

I1B I2B

g22B

g21BV2B g12BV1B

g11B

Two Port (Norton)

i1C

Linear Two Port 

v1C

i2C

v2C

H-parameters

(Hybrid Parameters) 

1 11 1 12 2C C C C Ch h= +V i v

2 21 1 22 2C C C C Ch h= +i i v

RXX
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Determination of Amplifier Two-Port Parameters

• Input and output parameters are obtained in exactly the same way, 

only distinction is in the notation used for the ports.

• Methods given for obtaining amplifier parameters  Rin, ROUT and AV for 

unilateral networks are a special case of the non-unilateral analysis by 

observing that AVR=0.

• In some cases, other methods for obtaining the amplifier parameters 

are easier than the “VTEST : ITEST” method that  was just discussed  
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Examples

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C=1uF

R1=0.5K
RB2=10K

Biasing 

Circuit

Determine VOUTQ and the SS voltage gain (AV), assume β=100

(AV is  one of  the small-signal model parameters for this circuit if treated as two-port with 

load absorbed into two-port)

This is a fundamentally different circuit than what we have considered previously ! 
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Examples

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C=1uF

R1=0.5K
RB2=10K

Determine VOUTQ and the SS voltage gain (AV), assume β=100

R2

2K

Q1

R1

0.5K

RB

10K//50K

VIN

VOUT

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C=1uF

R1=0.5K
RB2=10K

(AV is  one of  the small-signal model parameters for this circuit)
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Examples

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C=1uF

R1=0.5K
RB2=10K

IBB

IB
VB

Determine VOUTQ

This circuit is most practical when IB<<IBB

With this assumption, 

B2
B

B1 B2

R
V  = 12V = 2V

R +R

 
 
 

β=100

B
CQ EQ

1

V -0.6V 1.4V
I  = I  =  =  = 2.8mA

R .5K

 
 
 

OUTQ CQ 1V  =12V-I R  = 6.4V

R2=2K

Q1

VOUTQ

VCC=12V

RB1=50K

R1=0.5K
RB2=10K

IBB

IB
VB

dc equivalent circuit

R2=2K VOUTQ

VCC=12V

RB1=50K

R1=0.5K

IBB

VB

RB2=10K

IB

0.6V

βIB

dc equivalent circuit

simplified

Note: This Q-point is nearly independent of the 

characteristics of the nonlinear BJT !
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Examples

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C=1uF

R1=0.5K
RB2=10K

IBB

IB
VB

β=100

Determine SS voltage gain

R2=2K
Q1

VOUT

VIN(t)
R1=0.5K

RB=10K//50K

iB

R2=2K

VOUT

VIN(t)

R1=0.5K
8.3K

gmVBEVBE

iB

gπ

m  BE 2g ROUT= −V V

 ( ) BE 1  BE mR g +gIN = +V V V

 ( )  ( )1

2 m  BE 2 m

 BE 1  BE m 1 m

R g R g
A

R g +g R g +g
V

 

− −
= =

+ +

V

V V

42 m 2

1 m 1

R g R
A

R g R

− −
 = = −V

This voltage gain is nearly 

independent of the characteristics 

of the nonlinear BJT !

This is a fundamentally different 

amplifier structure

It can be shown that this is slightly 

non-unilateral

gmR1 typically >>1
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Examples

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C1=1uF

R1=0.5K
RB2=10K

C2=100uF

Biasing 

Circuit

Determine VOUTQ , RIN, ROUT,and the SS voltage gain, and AVR assume β=100
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Examples

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C1=1uF

R1=0.5K
RB2=10K

C2=100uF

Determine VOUTQ

The dc equivalent circuit 

R2=2K

Q1

VOUTQ

VCC=12V

RB1=50K

R1=0.5K
RB2=10K

IBB

IB
VB

This is the same as the previous circuit !

OUTQV  = 6.4V

2.8CQ

5.6V
I  = mA

2K
=

Note: This Q-point is nearly independent of the 

characteristics of the nonlinear BJT !
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Examples

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C1=1uF

R1=0.5K
RB2=10K

C2=100uF

Determine VOUTQ , RIN, ROUT,  AV, and AVR; assume β=100

R2=2K

Q1

VOUT

VCC=12V

VIN

RB1=50K

C1=1uF

R1

0.5K

RB2=10K C2

100uF

Q1

VOUT

VIN

R1

0.5K

RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

(AV , RIN, ROUT , and AVR are  the small-signal model parameters for this circuit)
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Examples

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C1=1uF

R1=0.5K
RB2=10K

C2=100uF

Determine the SS voltage gain    AV

R2

VIN

VOUT

RB1//RB2

The SS equivalent circuit 

This is the same as another previous-previous circuit !

V m 2A -g R

CQ 2
V

t

I R
A -

V


V

5.6V
A - 215

26mV
 = −

Note: This Gain is nearly independent of the 

characteristics of the nonlinear BJT !
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Examples Determination of RIN

R2

VIN

VOUT

RB1//RB2

The SS equivalent circuit 

IN B1 B2 π πR R //R //r r= 

R2
VIN

VOUT

RB1//RB2

Vbe

ic

gmVbe
go Vce

ib

gπ

iIN

β=100

930IN B1 B2 π πR R //R //r r=  = 

1

100 26

-1

CQ
π

t

I 2.8mA
r = 928

βV mV

−
   

= =    
•  

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C1=1uF

R1=0.5K
RB2=10K

C2=100uF
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Examples Determination of ROUT

R2

VIN

VOUT

RB1//RB2

The SS equivalent circuit 

2OUT 2 o 2R R //r=  =R K

β=100

R2

RB1//RB2

Vbe

ic

gmVbe
go Vce

ib

gπ

iTEST

VTEST

OUT 2 oR =R //r
TEST

TEST

=
V

i

( )
1 1

1CQ
o

AF

I 2.8mA
r 1.4E-5 71K

V 200V

− −
−   

= = = =    
  

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C1=1uF

R1=0.5K
RB2=10K

C2=100uF

0

0

1
r

g
=
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Examples Determine  AVR

R2

VIN

VOUT

RB1//RB2

The SS equivalent circuit 

0VRA =

β=100

R2

RB1//RB2

Vbe

ic

gmVbe
go Vce

ib

gπ
VTEST

VOUT TEST

=0OUT TESTV

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C1=1uF

R1=0.5K
RB2=10K

C2=100uF

This circuit is unilateral !
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Determination of small-signal two-port 

representation

RIN
V2

AVV1

V1

ROUT

R2=2K

Q1

VOUT

VCC=12V

VIN(t)

RB1=50K

C1=1uF

R1=0.5K
RB2=10K

C2=100uF

VA 215 − 930IN πR r =  2OUT 2R  =R K

This is the same basic amplifier that was considered many times
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Relationship with Dependent Sources ?

V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

Dependent sources from EE 201

VIN

IA

16IA

VB

200VB

Example showing two dependent sources
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Relationship with Dependent Sources ?

Vs=µVx

Vs=ρIx

Is=αVx

Is=βIx

V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

Dependent sources from EE 201

Current Dependent 

Current Source

Voltage Dependent 

Current Source

Current  Dependent 

Voltage Source

Voltage Dependent 

Voltage Source

Voltage 

Amplifier

Current 

Amplifier

Transresistance 

Amplifier

Transconductance  

Amplifier
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Relationship with Dependent Sources ?

V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

V1 V2

I1 I2

AVV1

Two Port (Thevenin)

V2=AVV1

Vs=µVx

RIN=  

ROUT=0 

AVR=0

AV=µ

It follows that 

Voltage dependent voltage source is a unilateral floating two-port voltage 

amplifier with RIN=∞ and ROUT=0 
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Relationship with Dependent Sources ?

V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

It follows that 

Current dependent voltage source is a unilateral floating two-port 

transresistance  amplifier with RIN=0 and ROUT=0 

Vs=ρIx V1 V2

I1 I2

RTI1

Two Port (Thevenin)

RIN=0 

ROUT=0 

AVR=0

ρ =RT

V2=RTI1
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Relationship with Dependent Sources ?

V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

It follows that 

Current dependent current source is a floating unilateral two-port current 

amplifier with RIN=0 and ROUT=∞ 

Is=βIx V1 V2

I1 I2

Two Port (Thevenin/Norton)

AII1

I2=AII1
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Relationship with Dependent Sources ?

V1 V2

I1 I2RIN ROUT

AVV1
AVRV2

Two Port (Thevenin)

It follows that 

Voltage dependent current source is a floating unilateral two-port 

transconductance amplifier with RIN=∞ and ROUT=∞ 

V1 V2

I1 I2

Two Port (Thevenin/Norton)

GTI1

I2=GTV1

Is=αVx
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Dependent Sources
Vs=µVx

Vs=ρIx

Is=αVx

Is=βIx

Dependent sources are unilateral two-port amplifiers with ideal input 

and output impedances

Dependent sources do not exist as basic circuit elements but amplifiers 

can be designed to perform approximately like a dependent source 

• Practical dependent sources typically are not floating on input or output

• One terminal is usually grounded

• Input and output impedances of realistic structures are usually not ideal

Why were “dependent sources” introduced as basic circuit elements instead of 

two-port amplifiers in the basic circuits courses???

Why was the concept of “dependent sources” not discussed in the basic 

electronics courses??? of 63  Slides57



Basic Amplifier Structures
• MOS and Bipolar Transistors both have 3 primary terminals
• MOS transistor has a fourth terminal that is generally considered a parasitic

terminal D

G B

S

B

E

C

D

G

S

B

E

C

Transistors as 3-terminal Devices

D

S

G B

E

C

Small Signal Transistor Models  

as 3-terminal Devices
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Basic Amplifier Structures

R1

VIN

VOUT

RM1

VIN

VOUT

These circuits considered previously  have a terminal (emitter or source) 

common to the input and output in the small-signal equivalent circuit

Observation:

For BJT, E is common, input on B, output on C

For MOSFET, S is common, input on G, output on D

Termed  “Common Emitter”

Termed  “Common Source”
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Basic Amplifier Structures

Amplifiers using these devices generally have one terminal common and 
use remaining terminals as input and output

Since devices are nearly unilateral, designation of input and output terminals
is uniquely determined

Three different ways to designate the common terminal

Source or Emitter   

Gate or Base   

Drain or Collector

termed Common Source or Common Emitter

termed Common Gate or Common Base

termed Common Drain or Common Collector

D

S

G B

E

C

Small Signal Transistor Models  

as 3-terminal Devices
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Basic Amplifier Structures

Common Source or Common Emitter

Common Gate or Common Base

Common Drain or Common Collector

Common   Input    Output Common   Input    Output

S          G          D                       E           B        C    

G           S         D                        B          E         C    

D          G          S                        C          B         E    

MOS BJT

D

S

G B

E

C

Small Signal Transistor Models  

as 3-terminal Devices

It will be shown that all 3 of the basic amplifiers are useful !

Identification of Input and Output Terminals is not arbitrary
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Stay Safe and Stay Healthy !
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End of Lecture 28
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